Design of Deep Belief Networks for Short-Term Prediction of Drought Index Using Data in the Huaihe River Basin

نویسندگان

  • Junfei Chen
  • Jing Chao
چکیده

With the global climate change, drought disasters occur frequently. Drought prediction is an important content for drought disaster management, planning and management of water resource systems of a river basin. In this study, a short-term drought prediction model based on deep belief networks DBNs is proposed to predict the time series of different time-scale standardized precipitation index SPI . The DBN model is applied to predict the drought time series in the Huaihe River Basin, China. Comparedwith BP neural network, the DBN-based drought prediction model has shown better predictive skills than the BP neural network for the different time-scale SPI. This research can improve drought prediction technology and be helpful for water resources managers and decision makers in managing drought disasters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-Temporal Analysis of Drought Severity Using Drought Indices and Deterministic and Geostatistical Methods (Case Study: Zayandehroud River Basin)

     Drought monitoring is a fundamental component of drought risk management. It is normally performed using various drought indices that are effectively continuous functions of rainfall and other hydrometeorological variables. In many instances, drought indices are used for monitoring purposes. Geostatistical methods allow the interpolation of spatially referenced data and the prediction of v...

متن کامل

An adaptive estimation method to predict thermal comfort indices man using car classification neural deep belief

Human thermal comfort and discomfort of many experimental and theoretical indices are calculated using the input data the indicator of climatic elements are such as wind speed, temperature, humidity, solar radiation, etc. The daily data of temperature، wind speed، relative humidity، and cloudiness between the years 1382-1392 were used. In the First step، Tmrt parameter was calculated in the Ray...

متن کامل

Hydrological impacts of precipitation extremes in the Huaihe River Basin, China

Precipitation extremes play a key role in flooding risks over the Huaihe River Basin, which is important to understand their hydrological impacts. Based on observed daily precipitation and streamflow data from 1958 to 2009, eight precipitation indices and three streamflow indices were calculated for the study of hydrological impacts of precipitation extremes. The results indicate that the wet c...

متن کامل

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

Drought monitoring using MODIS data and its comparison with SPI meteorological index in short periods (Case study: Jaz_Murian basin)

Drought is one of the most important threats for agricultural production in the world, espatially in Iran. This phenomenon has started with reduction of precipitations that lead to a decrease in soil moisture and an increase in soil surface temperature, which affect the vegetation growth. The purpose of this study was to investigate droughts in the Jaz_Murian basin by VHI, VCI, TCI and SPI indi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014